Search results

1 – 2 of 2
Article
Publication date: 29 January 2021

Hongwei Zhu, Zhiqiang Lu, Chenyao Lu and Yifei Ren

To meet the requirement of establishing an effective schedule for the assembly process with overall detection and rework, this paper aims to address a new problem named…

Abstract

Purpose

To meet the requirement of establishing an effective schedule for the assembly process with overall detection and rework, this paper aims to address a new problem named resource-constrained multi-project scheduling problem based on detection and rework (RCMPSP-DR).

Design/methodology/approach

First, to satisfy both online and offline scheduling, a mixed integer programming model is established with a weighted bi-objective minimizing the expected makespan and the solution robustness. Second, an algorithm that combines a tabu search framework with a critical chain-based baseline generation scheme is designed. The tabu search framework focuses on searching for a reasonable resource flow representing the execution sequence of activities, while the critical chain-based baseline generation scheme establishes a buffered baseline schedule by estimating the tradeoff between two aspects of bi-objective.

Findings

The proposed algorithm can get solutions with gaps from −4.45% to 2.33% when compared with those obtained by the commercial MIP solver CPLEX. Moreover, the algorithm outperforms four other algorithms in terms of both objective performance and stability over instances with different weighting parameters, which reveals its effectiveness.

Originality/value

The represented RCMPSP-DR considering the overall detection and rework is an extension of the scheduling problem for large-scale equipment. An effective algorithm is proposed to establish the baseline schedule and determine the execution sequence of activities for the assembly process, which is significant for practical engineering applications.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 April 2023

Yao Chen, Ruijun Liang, Wenfeng Ran and Weifang Chen

In gearbox fault diagnosis, identifying the fault type and severity simultaneously, as well as the compound fault containing multiple faults, is necessary.

Abstract

Purpose

In gearbox fault diagnosis, identifying the fault type and severity simultaneously, as well as the compound fault containing multiple faults, is necessary.

Design/methodology/approach

To diagnose multiple faults simultaneously, this paper proposes a multichannel and multi-task convolutional neural network (MCMT-CNN) model.

Findings

Experiments were conducted on a bearing dataset containing different fault types and severities and a gearbox compound fault dataset. The experimental results show that MCMT-CNN can effectively extract features of different tasks from vibration signals, with a diagnosis accuracy of more than 97%.

Originality/value

Vibration signals at different positions and in different directions are taken as the MC inputs to ensure the integrity of the fault features. Fault labels are established to retain and distinguish the unique features of different tasks. In MCMT-CNN, multiple task branches can connect and share all neurons in the hidden layer, thus enabling multiple tasks to share information.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2